二次根式教学设计

时间:2025-01-16 01:02:57
二次根式教学设计

二次根式教学设计

作为一无名无私奉献的教育工作者,常常要写一份优秀的教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那要怎么写好教学设计呢?下面是小编收集整理的二次根式教学设计,希望对大家有所帮助。

二次根式教学设计1

1教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3) 理解最简二次根式的概念

2学情分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

3重点难点

重点:二次根式的乘法法则与积的算术平方根的性质.

难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

4教学过程

4。1 第一学时

教学活动

活动1【导入】复习提问,探究规律

问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动 学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

2.观察思考,理解法则

问题2 教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4 对例题的运算你有什么看法?是如何进行的?

师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即 。利用该性质可以进行二次根式的化简。

活动2【讲授】观察思考,理解法则

问题2 教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4 对例题的运算你有什么看法?是如何进行的?

师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即 。利用该性质可以进行二次根式的化简。

活动3【活动】例题示范,学会应用

例1 计算: (1) ; (2) ; (3) 。

师生活动 提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?

【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,

问题5 你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动 学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。

问题6 课件展示一组二次根式的计算、化简题。

【设计意图】让学生用总结出的结论进行二次根式的运算。

活动4【练习】巩固概念,学以致用

例2 教材第9页例7。

师生活动 提问 本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?

再提问 章引言中的问题现在能解决了吗?

【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

活动5【测试】目标检测设计

1.在 、 、 中,最简二次根式为 。

【设计意图】考查对最简二次根式的概念的理解。

2.化简下列各式为最简二次根式: ; 。

【设计意图】复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。

3.化简:(1) ; (2) 。

【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算。

活动6【作业】布置作业

教科书第10页练习第1,2,3题;

教科书习题16。2第10,11题。

二次根式教学设计2

教学准备

1.教学目标

(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围. 2.教学重点/难点

理解二次根式的双重非负性.

3.教学用具

4.标签

教学过程< ……此处隐藏5919个字……数是非负数.

探究点二:二次根式有意义的条件

【类型一】 根据二次根式有意义求字母的取值范围

求使下列式子有意义的x的取值范围.

(1);(2);(3).

解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.

解:(1)由题意得4-3x>0,解得x<.当x<时,有意义;

(2)由题意得解得x≤3且x≠2.当x≤3且x≠2时,有意义;

(3)由题意得解得x≥-5且x≠0.当x≥-5且x≠0时,有意义.

方法总结:含二次根式的式子有意义的条件:

(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.

【类型二】 利用二次根式的非负性求解

(1)已知a、b满足+|b-|=0,解关于x的方程(a+2)x+b2=a-1;

(2)已知x、y都是实数,且y=++4,求yx的平方根.

解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x的值,进而求得y的值,进而可求出yx的平方根.

解:(1)根据题意得解得则(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;

(2)根据题意得解得x=3.则y=4,故yx=43=64,±=±8,∴yx的平方根为±8.

方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.

探究点三:和二次根式有关的规律探究性问题

先观察下列等式,再回答下列问题.

①=1+-=1;

②=1+-=1;

③=1+-=1.

(1)请你根据上面三个等式提供的信息,写出的结果;

(2)请你按照上面各等式反映的规律,试写出用

含n的式子表示的等式(n为正整数).

解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.

解:(1)=1+-=1;

(2)=1+-=1(n为正整数).

方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.

三、板书设计

1.二次根式的定义

一般地,我们把形如(a≥0)的式子叫做二次根式.

2.二次根式有意义的条件

被开方数(式)为非负数;有意义?a≥0.

通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.

二次根式教学设计

《二次根式》教学反思

二次根式教学设计10

一、教学目标

1.掌握二次根式的混合运算.

2.掌握混合运算的应用.

3.通过二次根式的混合运算,培养学生的运算能力.

4.通过混合运算知识拓展,培养学生的探索精神

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:二次根式的混合运算.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【例题】

例1 化简:

(1) ; (2) .

解:(1)

(2)

说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如 ,结果为-1,继续运算易出现符号上的差错,而把 先变为 ,这样 则为1,继续运算可避免错误.

例2 解下列方程(组):

(1)

(2)

(3)

解:(1)

(2)①× ,得

②× ,得

③-④,得

把 代入①,得

解得 .

是原方程组的解.

(3)由②,得

①× ,得

③-④,得

把 代入①,得

∴ 是原方程组的解.

例3 已知 , ,求 的值.

解: .

, ,

∴ .

例4 已知 , ,求 的值.

解: , .

(二)随堂练习

1.教材中P206中8.

2.解不等式: .

解:

3.已知 , ,求 的值.

解:3. ,或 .

4.已知 , ,求: 的值.

解 4.

5.已知 ,求 的值.

解 5. .

6.不求方根的值比较 与 的大小.

解 6.∵

(三)总结、扩展

根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.

(四)布置作业

教材中P207B组1、3和补充作业.

补充作业:

1.已知 ,求 的值.

2.已知 , ,求 的值.

(五)板书设计

标 题

1.例题……

3.例题……

2.练习题

4.练习题

八、背景知识与课外阅读

二次根式的混和运算方法和顺序

1.方法 (1)应用二次根式乘法、除法和加减法运算法则.

(2)在实数范围内运算律仍适用.

(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.

2.顺序 先乘方、后乘除,最后加减,有括号的先算括号内的数.

《二次根式教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式